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4- Matrix Analysis: (10hrs)

Review of matrix theory, linear transformation, Eigen values and Eigen vectors,
Laplace transform of matrices, application of electric circuit.

Introduction:
In this chapter, we turn our attention again to matrices, first considered in

student have the basic knowledge in Matrix Algebra their applications in
engineering.

As the reader will be aware, matrices are arrays of real or complex numbers, and
have a special, but not exclusive, relationship with systems of linear equations. An
(incorrect) initial impression often formed by users of mathematics is that
mathematicians have something of an obsession with these systems and their
solution. However, such systems occur quite naturally in the process of numerical
solution of ordinary differential equations used to model everyday engineering
processes. Systems of linear first-order differential equations with constant
coefficients are at the core of the state-space representation of linear system models.
Identification, analysis and indeed design of such systems can conveniently be
performed in the state-space representation, with this form assuming a particular
importance in the case of multivariable systems.

In all these areas, it is convenient to use a matrix representation for the systems
under Consideration, since this allows the system model to be manipulated following
the rules of matrix algebra. A particularly valuable type of manipulation is
simplification in some sense. Such a simplification process is an example of a system
transformation, carried out by the process of matrix multiplication. At the heart of
many transformations are the eigenvalues and eigenvectors of a square matrix. In

addition to providing the means by which simplifying transformations can be
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deduced, system eigenvalues provide vital information on system stability,
fundamental frequencies, speed of decay and long-term system behavior. For this
reason, we devote a substantial amount of space to the process of their calculation,
both by hand and by numerical means when necessary. Our treatment of numerical
methods is intended to be purely indicative rather than complete, because a
comprehensive matrix algebra computational tool kit, such as MATLAB, is now part
of the essential armory of all serious users of mathematics.

In addition to developing the use of matrix algebra techniques, we also
demonstrate the techniques and applications of matrix analysis, focusing on the
state-space system model widely used in control and systems engineering. Here we
encounter the idea of a function of a matrix, in particular the matrix exponential, and
we see again the role of the eigenvalues in its calculation. This chapter also includes
a section on singular value decomposition and the pseudo inverse, together with a

brief section on Lyapunov stability of linear systems using quadratic forms.

1.2 Review of matrix algebra
This section contains a summary of the definitions and properties associated

with matrices and determinants. A full account can be found in previous study. It is
assumed that readers, prior to embarking on this chapter, have a fairly thorough

understanding of the material summarized in this section.
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Definitions

(a) An array of real numbers

ay,, dp dp a,
A= fyy Gyl sy
1 2 3 [ £

1s called an m X n matrix with m rows and » columns. The a; 1s referred to as the
i, jth element and denotes the element in the ith row and jth column. If m = n

then A is called a square matrix of order ». If the matrix has one column or one
row then it is called a column vector or a row vector respectively.

(b) Ina square matrix A of order » the diagonal containing the elements a,,, a,,, . . .,

a,, 1s called the principal or leading diagonal. The sum of the elements in this
diagonal is called the trace of A, that is

n
trace A = Z a,

i=1

(c¢) A diagonal matrix is a square matrix that has its only non-zero elements along the

leading diagonal. A special case of a diagonal matrix is the unit or identity matrix /
tor whicha,, =a,,=...=a,,=1.

(d) A zero or null matrix 0 is a matrix with every element zero.

(e) The transposed matrix A" is the matrix A with rows and columns interchanged,
its 1, jth element being a;;.

(f) A square matrix A is called a symmetric matrix if A" = A. It is called skew
symmetric if A" =—A.
1.2.2 Basic operations on matrices

In what follows the matrices A, B and C are assumed to have the i, jth elements aj,
bi; and cjj respectively.
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Equality

The matrices A and B are equal, that is A = B, if they are of the same order m X n
and

ag=by, l<is=m |l<j=sn

Multiplication by a scalar
If A is a scalar then the matrix AA has elements laU.

Addition

We can only add an m X n matrix A to another m X n matrix B and the elements of the
sum A + B are

ag+b;, lsism, 1sj=sn

Properties of addition

(i) commutative law: A+B=B+ A

(ii) associative law: (A+B)+C=A+(B+C)
(iii) distributive law: AMA+ B)= 1A+ AB, A scalar

Matrix multiplication

If A is an m X p matrix and B a p X n matrix then we define the product C = AB as the
m X n matrix with elements

I
C{_’f:Zﬂ;kbkj, f:l,z,....}m; _}-:1,2,...,}1

k=1

Properties of multiplication

(i)  The commutative law is not satisfied in general; that is, in general AB # BA.
Order matters and we distinguish between AB and BA by the terminology:
pre-multiplication of B by A to form AB and pest-multiplication of B by A to
form BA.
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(ii)  Associative law: A(BC)=(AB)C
(iii) If A is a scalar then
(L1A)B=A(AB)= LAB
(iv) Distributive law over addition:
(A+B)C=AC+BC
AB+C)=AB+ AC
Note the importance of maintaining order of multiplication.

(v) If Ais an m X n matrix and if [, and [, are the unit matrices of order m and n
respectively then

LA=AlL=A

Properties of the transpose

If AT is the transposed matrix of A then
(i) (A+B)'=A"+BT"

(i) (A=A

(i) (AB)'=B'AT

1.2.3 Determinants

The determinant of a square # X » matrix A is denoted by det A or |A|.

If we take a determinant and delete row i and column j then the determinant
remaining is called the minor M, of the 7, jth element. In general we can take any row
i (or column) and evaluate an » X n determinant | A | as

A=Y -7 a;M,

J=1

A minor multiplied by the appropriate sign is called the cofactor 4, of the 7, jth element
so 4, = (-1)” M, and thus

|A|= 2 a:‘_,fA:;
J=1
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Some useful properties
(i) |AT[=]A]|
(i) |AB[=|A|B]

(iii) A square matrix A is said to be non-singular if | A | # 0 and singular if |A | = 0.
1.2.4 Adjoint and inverse matrices

Adjoint matrix

The adjoint of a square matrix A is the transpose of the matrix of cofactors, so for a
3 X 3 matrix A

.
Al] Alz AH'

adjA= |4, A4, A,
Ay, Az As

Properties

(i) A(adjA)=A|l

(i) |adj A|=]A|"", n being the order of A
(iii) adj (AB)=(adj B)(adj A)

Inverse matrix
Given a square matrix A if we can construct a square matrix B such that
BA=AB=1

then we call B the inverse of A and write it as A™'.

Properties

(i)  If A is non-singular then |A| # 0 and A™' = (adj A)/|A|.
(i) If A is singular then |A| =0 and A~ does not exist.
(iii) (ABy'=B'A™".
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1.2.5 Linear equations

In this section we reiterate some definitive statements about the solution of the system
of simultaneous linear equations

a,x, +apx+...+ax,=b
ay X, + aynxs +...+a,x,=b,

apx, +asx;+...+a,x,=b

wrtr T YR

or, in matrix notation,

ay dyp .. Q|| X b,
yy dyz .. gy || Xz b,
ayy a,, LR aypy Xn bn
that is,
Ax=b

where A is the matrix of coefficients and x is the vector of unknowns. If b = 0 the

equations are called homogeneous, while if b # 0 they are called nonhomogeneous (or
inhomogeneous). Considering individual cases:
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Case (i)

Ifb#0and |A|# 0 then we have a unique solution x = A™'b.

Case (ii)

If b=0and |A|# 0 we have the trivial solution x = 0.

Case (iii)
If b#0and |A|= 0 then we have two possibilities: either the equations are inconsistent
and we have no solution or we have infinitely many solutions.

Case (iv)

If =0 and |A| = 0 then we have infinitely many solutions.

Case (iv) 1s one of the most important, since from it we can deduce the important
result that the homogeneous equation Ax = 0 has a non-trivial solution if and only
if|A|=0.

1.2.6 Rank of a matrix

The most commonly used definition of the rank, rank A, of a matrix A is that it is the order
of the largest square submatrix of A with a non-zero determinant, a square submatrix
being formed by deleting rows and columns to form a square matrix. Unfortunately it
is not always easy to compute the rank using this definition and an alternative definition,
which provides a constructive approach to calculating the rank, is often adopted. First,
using elementary row operations, the matrix A is reduced to echelon form
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in which all the entries below the line are zero, and the leading element, marked *, in
each row above the line is non-zero. The number of non-zero rows in the echelon form
is equal to rank A.

When considering the solution of equations (1.1) we saw that provided the determinant
of the matrix A was not zero we could obtain explicit solutions in terms of the inverse matrix.
However, when we looked at cases with zero determinant the results were much less clear.
The idea of the rank of a matrix helps to make these results more precise. Defining the
augmented matrix (A : b) for (1.1) as the matrix A with the column b added to it then
we can state the results of cases (ii1) and (1v) of Section 1.2.5 more clearly as follows:

If A and (A : b) have different rank then we have no solution to (1.1). If the two
matrices have the same rank then a solution exists, and furthermore the solution
will contain a number of free parameters equal to (n — rank A).

1.3.1 Linear independence

The idea of linear dependence is a general one for any vector space. The vector x is said
to be linearly dependent on x, x,, . . ., x,, if it can be written as

x=ox +0ox+...+0,x,

for some scalars o, . ... a,. The set of vectors y,, y,, ..., y, is said to be linearly
independent if and only if

ﬁ1y1+ﬁ2y2+"'+ﬁm}'m:0

implies that B, =, =...=f,=0.
Let us now take a linearly independent set of vectors x,, x,, ..., x,, in " and con-
struct a set consisting of all vectors of the form

xX=0x + ox,+...+0,Xx,

We shall call this set S(x,, x,, .. ., x,). It is clearly a vector space, since all the axioms
are satisfied.

1.4 The eigenvalue problem
A problem that leads to a concept of crucial importance in many branches of
mathematics and its applications is that of seeking non-trivial solutions x # 0 to the
matrix Equation
AxX=AX
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This is referred to as the eigenvalue problem; values of the scalar A for which non-
trivial solutions exist are called eigenvalues and the corresponding solutions x # 0
are called the eigenvectors. Such problems arise naturally in many branches of
engineering. For example, in vibrations the eigenvalues and eigenvectors describe
the frequency and mode of vibration respectively, while in mechanics they represent
principal stresses and the principal axes of stress in bodies subjected to external
forces.

1.4.1 The characteristic equation

The set of simultaneous equations

Ax=Ax (1.4)
where Aisann X nmatrixandx =[x, x, ... x,]"isann X | column vector can
be written in the form

(AMl—A)x=0 (1.5)

where [ is the identity matrix. The matrix equation (1.5) represents simply a set of
homogeneous equations, and we know that a non-trivial solution exists if

(D) =|M-A|=0 (1.6)

Here c(A) is the expansion of the determinant and is a polynomial of degree »n in A,
called the characteristic polynomial of A. Thus

c(A)=A"+ Cn_lﬂ."_] + C,,_z.l"'z +...+t A+

and the equation ¢(A) = 0 is called the characteristic equation of A. We note that this
equation can be obtained just as well by evaluating |A — Al| = 0; however, the form
(1.6) is preferred for the definition of the characteristic equation, since the coefficient
of A" is then always +1.

In many areas of engineering, particularly in those involving vibration or the control
of processes, the determination of those values of A for which (1.5) has a non-trivial
solution (that is, a solution for which x # 0) is of vital importance. These values of
A are precisely the values that satisfy the characteristic equation, and are called the
eigenvalues of A.
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Example 1.2  Find the characteristic equation for the matrix

1 1 =2
A=|-1 2 1
0 1 -1

For matrices of large order, determining the characteristic polynomial by direct
expansion of | Al — A | is unsatisfactory in view of the large number of terms involved
in the determinant expansion. Alternative procedures are available to reduce the amount
of calculation, and that due to Faddeev may be stated as follows.
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The method of Faddeev

If the characteristic polynomial of an n X » matrix A is written as

Aﬂ_plln—l_--. _Pn—]'j"—pn
then the coefficients p,, p,, . . . , p, can be computed using
-1 -
p,=~-traceA, (r=1,2,...,n)
-

B,=A, —pl, where lis the n X n identity matrix
The calculations may be checked using the result that

B,=A,—p,J mustbe the zero matrix

Example 1.3: Using the method of Faddeev, obtain the characteristic equation of
the matrix A of Example 1.2.
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1.4.2 Eigenvalues and eigenvectors

The roots of the characteristic equation () are called the eigenvalues of the
matrix A (the terms latent roots, proper roots and characteristic roots are also
sometimes used). By the Fundamental Theorem of Algebra, a polynomial equation
of degree n has exactly n roots, so that the matrix A has exactly n eigenvalues A;, i
=1,2,...,n. These eigenvalues may be real or complex, and not necessarily distinct.
Corresponding to each eigenvalue A, there is a non-zero solution x =e; of ( ); €j is
called the eigenvector of A corresponding to the eigenvalue A;. (Again the terms
latent vector, proper vector and characteristic vector are sometimes seen, but are

generally obsolete.) We note that if x = e satisfies ( ) then any scalar multiple f;
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e; of ejalso satisfies (), so that the eigenvector e;may only be determined to within
a scalar multiple.
Example 1.4: Determine the eigenvalues and eigenvectors for the matrix A.
1 1 -2
A=|-1 2 1
0 1 -1
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Example 1.5  Find the eigenvalues and eigenvectors of

A= cos@ —sinf

sinf@ cos#@
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Repeated eigenvalues

In the examples considered so far the eigenvalues 4;(i=1, 2, ... ) of the matrix A have
been distinet, and in such cases the corresponding eigenvectors can be found and are
linearly independent. The matrix A is then said to have a full set of linearly independent
eigenvectors. It is clear that the roots of the characteristic polynomial ¢(A) may not all
be distinct; and when ¢(4) has p < n distinct roots, c(A) may be factorized as

c(A)=(A=1)"(A=2)" ... (A=4,)"

indicating that theroot A=A4,i=1,2, ..., p, is a root of order m,, where the integer m,
is called the algebraic multiplicity of the eigenvalue A, Clearly m, + m, +...+m,=n.
When a matrix A has repeated eigenvalues, the question arises as to whether it is
possible to obtain a full set of linearly independent eigenvectors for A. We first consider
two examples to illustrate the situation.

Example 1.6  Determine the eigenvalues and corresponding eigenvectors of the matrix

3 -3 2
A=|-1 5 =2
-1 3 0
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Example 1.7 Determine the eigenvalues and corresponding eigenvectors for the matrix

1 2 2
A= 0 2 1
-1 2 2
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1.4.6 Some useful properties of eigenvalues

The following basic properties of the eigenvalues 4, 4,, ..., 4, of an n X n matrix A
are sometimes useful. The results are readily proved either from the definition of eigen-
values as the values of A satisfying (1.4), or by comparison of corresponding charac-
teristic polynomials (1.6). Consequently, the proofs are left to Exercise 10.

Property 1.1

The sum of the eigenvalues of A is
2 A, =trace A = z a,;
i=1 i=1

Property 1.2

The product of the eigenvalues of A is

ﬁ A, = detA
i=1

where detA denotes the determinant of the matrix A.

Property 1.3

The eigenvalues of the inverse matrix A™', provided it exists, are

Property 1.4

The eigenvalues of the transposed matrix A" are
A, Ay oo, A

as for the matrix A.

H
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Property 1.5

If k is a scalar then the eigenvalues of kA are

Mh klzs L k‘a’n
Property 1.6

If k is a scalar and [ the n X n identity (unit) matrix then the eigenvalues of A + il
are respectively

dotk Atk ..., Atk

. ]

Property 1.7

If k is a positive integer then the eigenvalues of A* are

lf'! lg'! -3 lk

4

Example 1.9 Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric
matrix

b

I
=TI SIS
S Lo

0
0
3

and show that the normalized eigenvectors form an orthonormal set.
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1.4.7 Symmetric matrices

A square matrix A is said to be symmetric if A" = A. Such matrices form an important
class and arise in a variety of practical situations. Two important results concerning the
eigenvalues and eigenvectors of such matrices are

(a) the eigenvalues of a real symmetric matrix are real;

(b) for an n X n real symmetric matrix it 1s always possible to find » linearly

independent eigenvectors e, e,, . . . , e, that are mutually orthogonal so
that ele, =0 fori #.

[f the orthogonal eigenvectors of a symmetric matrix are normalized as
é,6,...,6,

then the inner (scalar) product is
=06, (i,j=1,2,....n)

where J; is the Kronecker delta defined in Section 1.3.2.
The set of normalized eigenvectors of a symmetric matrix therefore forms an ortho-
normal set (that is, it forms a mutually orthogonal normalized set of vectors).

1.6 Reduction to canonical form

In this section we examine the process of reduction of a matrix to canonical form.
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Specifically, we examine methods by which certain square matrices can be reduced
or transformed into diagonal form. The process of transformation can be thought of
as a change of system coordinates, with the new coordinate axes chosen in such a
way that the system can be expressed in a simple form. The simplification may, for
example, be a transformation to principal axes or a decoupling of system equations.
We will see that not all matrices can be reduced to diagonal form. In some cases we
can only achieve the so-called Jordan canonical form, but many of the advantages
of the diagonal form can be extended to this case as well.

The transformation to diagonal form is just one example of a similarity transform.
Other such transforms exist, but, in common with the transformation to diagonal
form, their purpose is usually that of simplifying the system model in some way.

1.6.1 Reduction to diagonal form

For an n X n matrix A possessing a full set of » linearly independent eigenvectors
e, e, ...,e, wecan write down a modal matrix M having the » eigenvectors as its
columns:

M=[e, e e ... e]

The diagonal matrix having the eigenvalues of A as its diagonal elements is called
the spectral matrix corresponding to the modal matrix M of A, often denoted by A.
That 1s,

with the ijth element being given by 4,6, where §; is the Kronecker delta and 7, j = 1,
2, ....n ltis important in the work that follows that the pair of matrices M and A
are written down correctly. If the ith column of M is the eigenvector e, then the
element in the (i, 7) position in A must be 4, the eigenvalue corresponding to the

eigenvector e;.

Example 1.14  Obtain a modal matrix and the corresponding spectral matrix for the matrix A of
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11 =2

0 1 -1
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Returning to the general case, if we premultiply the matrix M by A, we obtain

AM=Ale, e, ... e, ]=[Ae Ae, ... Ae]
=[Ae A.es ... Ae]
so that
AM=MA (1.18)
Since the n eigenvectors ey, e,, . . . , e, are linearly independent, the matrix M is non-

singular, so that M~ exists. Thus premultiplying by M~ gives

M'AM=M-"MA= A (1.19)

indicating that the similarity transformation M~ AM reduces the matrix A to the diag-
onal or canonical form A. Thus a matrix A possessing a full set of linearly independent
eigenvectors 1s reducible to diagonal form, and the reduction process is often referred
to as the diagonalization of the matrix A. Since

A=MAM" (1.20)

it follows that A is uniquely determined once the eigenvalues and corresponding eigen-
vectors are known. Note that knowledge of the eigenvalues and eigenvectors alone is
not sufficient: in order to structure M and A correctly, the association of eigenvalues
and the corresponding eigenvectors must also be known.

Example : Verify results (1.19) and (1.20) for the matrix A

1 1 -2
A=|-1 2 1
0 1 -1
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Functions of a matrix

Let A be an »n X n constant square matrix, so that
A= AA A= AA*=A’A, andsoon

are all defined. We can then define a function f{A) of the matrix A using a power series
representation. For example,

f{A)=iﬁrA’=ﬁu!+ﬁ1A+...+,ﬂpA" (1.26)

r=0

where we have interpreted A’ as the n X n identity matrix /.

Example 1.25  Given the 2 x 2 square matrix

S

2
determine f(A) = Z‘_.-Srn*‘ilr when B,=1, B,=-1and 3, =3.

r=0
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Theorem 1.3 Cayley—Hamilton theorem

A square matrix A satisfies its own characteristic equation; that is, if
At A e, ATt At e, =0
is the characteristic equation of an » X » matrix A then
A+, A7 +¢, AT+ ...+ cA+cl=0 (1.28)

where [ is the n X n identity matrix.

Example 1.27  Verify the Cayley=Hamilton theorem for the matrix

Al
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Example 1.28  Given that the matrix

S

has eigenvalues 4, = —1 and 4, = -2 calculate A° and A", where r is an integer greater
than 2.
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Example 1.29  Given that the matrix

-3

has eigenvalues 4, = 4, = —1, determine A", where r is an integer greater than 2.
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Example 1.30  Calculate ¢’ and sin At when

A |l -
0 1
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From this we can deduce that for an n X n matrix A we may write

]

fA) =Y BA

r=0

as

f(A)= i oA (1.342)
r=0
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which generalizes the result (1.33). Again the coefficients o, «,, ..., o, are
obtained by solving the » equations

f(A) = Ea,lf (i=1,2,...,n) (1.34b)

where A4,, 4,, ..., A, are the eigenvalues of A. If A has repeated eigenvalues, we

differentiate as before, noting that if A, is an eigenvalue of multiplicity m then the
first m — | denvatives

dk d.k r—1
L =Lt k=12...,m-1
a dﬂ.i‘g,; f

are also satisfied by 4,.

Example 1.31 Using the result (1.35), calculate A* for the matrix

gl
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E (EA:) _ Aem _ eA:A
dt

J efdr= A" - =" - A"

0

Afr+1] Ar Ar
e Y = a1 e

It follows from the power series definition that

EA.- eBt — e|[J.|Il.+B )t

if and only if the matrices A and B commute; that is, if AB = BA.
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d d
E A1) = [E H.‘j(r)}
and

J' A(t)dr = U ay(t) df}

Example 1.32  Evaluate dA/dt and [Adt for the matrix

£+l -3
2 £ 42t-1
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Note that in general

.u—ldA

d "
E[A{I)] #nA E

S5 Show that the matrix

]

satisfies its own characteristic equation.

36  Given

use the Cayley—Hamilton theorem to evaluate

(ay A (b A (o) A

4?2  Given

F+1 -1
5 0

A=

evaluate A and show that

dA

d 2
— (A= 2A
dr( ) dt

38

Given

A=

T = ]
[ S I Y ]
et b3

compute A’ and, using the Cayley—Hamilton
theorem, compute

A =3A + A +3A - 24"+ 3]

Evaluate e” for

10 10
A= b) A=
@as|) | wasll )



